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Abstract

The purpose of this paper is to develop an engineering approach to computations of turbulent flows in composite domains partly occupied
by a clear fluid and partly by a fluid saturated porous medium. Previous research concerning turbulent flows in porous media indicates
that the effect of porous media is to dampen turbulence. Therefore, in porous/fluid domains the penetration depth of turbulent eddies into
the porous region is expected to be small. The authors suggest assuming that the flow over the whole porous region remains laminar an
matching turbulent flow solution in the clear fluid region with the laminar flow solution in the turbulent flow region. Although the flow in
the porous region is assumed to be laminar, linear Darcy or Brinkman—Darcy models cannot be utilized to describe momentum transport
in the porous region because of large filtration velocity. The momentum transport model in the porous layer utilized in this research is
based on the Brinkman—Forchheimer-extended Darcy equation, which allows the accounting for deviation from linearity and also allows a
smooth matching of the filtration velocity at the porous/fluid interface. Because of the large filtration velocity in the porous region, the energy
equation in the porous region also accounts for the thermal dispersion effects.

0 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction turbulence in porous media (Antohe and Lage [4], Prakash
et al. [5,6]) indicate is that the effect of porous media is

Forced convection turbulent flow in composite porous/ {© dampen turbulence, and this dampening is stronger for
fluid domains is relevant to many industrial applications. POrous media of smaller permeability. It can be expected,
Relevant examples include, but not limited to turbulent flows therefore, that if the permeability of the porous layer is
near porous obstacles [1] (this is an important problem, sufficiently small, the flow in the porous region will remain
for example, in determining optimal parameters of tree laminar even if the flow in the clear fluid region is turbulent.
shelterbelts), casting of binary alloys with electromagnetic 1€ whole porous region in this formulation becomes a
stirring [2], avoiding freezing of gating channels in mould Iarge laminar sublayer. Indeed, true turbulence_ implies the
filing in casting processes, cooling of microelectronics €XiSténce of a cascade of energy from large eddies to smaller
[3], and modeling blood flow in partially closed coronary €ddies. This cascade cannot develop in the porous region if
arteries because of the deposition of fatty material along pe”ﬁab'“ﬁ/ Or‘: th?I porous ?edlum is sufficiently small.
their walls (this disease often requires a coronary artery Although the flow in the porous region is assumed
bypass surgery). In general, this is a complicated problem laminar, it is expecteq that the_ dependence_ of flow veloc!ty
and matching turbulent models for the clear fluid and porous ©" € Pressure gradient deviates from a linear correlation
regions is not trivial. However, in forced convection in given by the Darcy law. This deviation can be accounted

composite porous/fluid domains most of the fluid flow is for by utilizing the Forchheimer extension of the Darcy law

expected to go through the clear fluid region because of the!" the momentum equation and the thermal dispersion term

considerable resistance that the porous layer creates to th(lr:]noizg t?]r;?;%;quig?fégﬁi ?nng Br?{)ann' g)]g' Itttﬁzoﬂd pceal
flow. Recent theoretical and experimental investigations of * " IS a ditt In opinions utthe physi
origin of the Forchheimer drag and thermal dispersion.

Masuka and Takatsu [8] suggested that the Forchheimer
* Corresponding author. flow resistance and thermal dispersion are caused mainly by
E-mail addressavkuznet@eos.ncsu.edu (A.V. Kuznetsov). turbulent mixing in porous media. A different point of view
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Nomenclature
as fluid thermal diffusivity .............. st ur friction velocity at the porous/fluid interface,
ar eddy diffusivity of heat............... -1 =/eY2. ml
AT Van Driest coefficient, defined in Eq. (17) Ui dimensionless mean flow velocity in the duct
CF Forchheimer coefficient yt dimensionless distance from the porous/fluid
c dimensionless experimental constant in the interface=&R* —r*
correlation for thermal dispersion i the smallest dimensionless distance from the
dp average diameter of porous particle . ....... m interface for whichu; = ur,
Da  Darcy number= K /R? Greek symbols
Fiien Klebanoff intermittency function, defined in oT closure coefficient in the Cebeci—Smith model,
Eq. (15) defined in Eq. (17)
h heat transfer coefficient . ........ W2.K-1 , n=a- L o
kg fluid thermal conductivity . .. . ... wh-1.K-1 p d|men§|onless .aldjustable coefficientin the
L matching condition for the shear stress at the
km stagnant thermal conductivity of the porous P
. 11 porous/fluid interface
Medium ......ooovveniinnnnn, WK 0 dimensionless temperature for the constant wall
Nu Nusselt numbee= h2R/ k¢ heat flux casex (1/Nu)(T — Tw)/(Tm — Tw)
p Pressure. ........ooiiiiii e Pa K von Karman constant, defined in Eq. (17)
Pr Prandtl number= v/ar Meff effective viscosity of porous
Pri turbulent Prandtl numbes vr/at medium........................ kp—l.st
aw wallheatflux....................... W2 1 fluid VISCOSIY . . ..o kr1.s1
r radial coordinate . ........................ m eddy VISCOSIY ..+ v voeereeenn. kp—1s1
rt d|men5|9nless radial coordinateu,r/vs lh{r dimensionless eddy Viscosity, ut /s
R ductradius...........ccoiiiiiiii .. m T dimensionless eddy ViSCOSity in the inner |ayer
R dimensionless radius of the tubeu, R /vt KT, dimensionless eddy viscosity in the outer laye
Re Reynolds number based on the average particle fluid kinematic viscosity ............. frs 1
diameter and the friction velocity at the VT eddy diffusivity of momentum .. ...... —1
porous/fluid interfaces u dp/ vt £ dimensionless position of the interface, defined
T temperature................oooo K in Fig. 1
Tm mean flow temperature.................... K p fluiddensity ........................ kyp 3
Tw wall temperature .............. ... K 1 shear stress at the porous/fluid interfacemi?
u longitudinal velocity . ................. o 1) dimensionless temperature for the constant wall
ut dimensionless velocity: u/u- temperature case; (T — Tw)/(Tm — Tw)

is shared by Nield [9] who, referencing a book by Bear [10], temperatureTiy. The entrance region is not considered, and
pointed out that actual turbulence occurs at values of thethe flow is assumed to be hydrodynamically and thermally
Reynolds number at least one order of magnitude higher thanfully developed.

the Reynolds number at which the flow starts deviating from

the Darcy law. The authors of this paper share Dr. Nield’s )

point of view expressed in Ref. [9]. Therefore, by utilizing 2 Problem formulation

Forchheimer and dispersion terms in equations for the
porous region, they do not attempt to model turbulence in the
porous layer, they assume that the flow in the porous region
is laminar. However, because of the large filtration velocity,

2.1. Governing equation in the porous region

Since the whole flow domain is divided into two regions,
. X . o the central region which is occupied by a clear fluid (where
espeqally in the vicinity of the porous/fluid interface, non- the flow is turbulent) and the peripheral region occupied by
Darcian effects must be accounted for. a fluid saturated porous medium (where the flow is laminar),
Fig. 1 displays a schematic diagram of the problem geparate sets of governing equations must be formulated
considered in this paper. Itis assumed that the central portionfgy each of these two regions. The solutions must then be
of the circular tube, G< r < &R, is occupied by a clear  matched at the porous/fluid interface.
fluid while its peripheral partéR < r < R, is occupied For the porous regioé R < r < R), the Brinkman—
by an isotropic porous medium of uniform porosity. Two Forchheimer extension of the Darcy law [7] is utilized. The
types of thermal boundary conditions at the tube wall are Forchheimer term accounts for the deviation from linear-
considered, a constant heat fluxy, and a constant wall ity, which is essential for large filtration velocity. Brinkman
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= const

qy = const or Ty,

porous layer adjacent to the wall,
laminar flow region

X

Fig. 1. Schematic diagram of the problem.

term allows retaining continuity of filtration velocity at the

porous/fluid interface. Because of the turbulent flow in the
central portion of the tube, it is convenient to introduce di-
mensionless variables similar to wall coordinates in turbu-
lence modeling. These dimensionless coordinates are the

n

915

wall heat flux cas¢he dimensionless temperature can be de-
fined as:

6 = (1/Nu)(T — Tw)/(Tm — Tw) 4)

where T is the temperaturelyy is the wall temperature
(temperature at* = R™), Tn, is the mean temperature in
the tube:

R
2
Tm= R2U- /uTr dr (5)
0
Uy is the mean fluid velocity in the tube:
RT
v 2 utrtdrt (6)
T (RY)?
0
andNu is the Nusselt number:
Nu=h2R/kt = 2Rqyy/ [kt (Tw — Tm) ] (7)

used throughout the channel, in both laminar (porous) andwhere# is the heat transfer coefficient agg, is the wall

turbulent (clear fluid) regions. For example, dimensionless
radius is introduced as:

rt

1)

where r is the dimensional radius; is the friction velocity
at the porous/fluid interface(zi/pf)Y/?; v is the fluid
kinematic viscosityps is the fluid density; and; is the shear
stress at the porous/fluid interface.

The dimensionless filtration velocity is defined as:

=ucr/vi

+

um=uju,

(2)

where u is the dimensional filtration velocity (over the
clear fluid region filtration velocity coincides with the fluid
velocity).

In these dimensionless variables the Brinkman—Forch-
heimer-extended Darcy equation [7] can be presented as:

(a7 aw)
CF +\2 _
~ Da(Rt)2  Dal/2R+ ()" =0
whereck is the Forchheimer coefficienBa is the Darcy
number,K /R?; RT is the dimensionless radius of the tube,
ur R/vi; nefr is the effective viscosity in the porous region;
wui is the fluid dynamic viscosity; anglis the dimensionless
position of the interface (cf. Fig. 1). The ratiaf/us is a
function of porosity of the porous medium. The porosity of

2
ERT

1 d
rtdrt

+
+du

Heft i
drt

1

ut

®3)

the porous layer is assumed constant and uniform; therefore

the ratiouest/ it is also constant.
Eq. (3) is the momentum equation for the porous region.

The energy equations for the porous region must be formu-
lated separately for the constant wall heat flux and the con-

stant wall temperature boundary conditions. Foraestant

heat flux.

Assuming thermal equilibrium between the fluid and
solid in the porous layer, the energy equation for the constant
wall heat flux case can then be presented as:

1 d [[km D\
r_+(j}’—+|:<k_f+CPquJu )I’ dr_+
1 ut
T RD2UR ®)

where C is dimensionless experimental constant in the
correlation for thermal dispersiort; is the fluid thermal
conductivity;km is the stagnant thermal conductivity of the
porous medium (when™ = 0); Pr is the Prandtl number,
vt/as; af is the fluid thermal diffusivity;Re, = u.dp/vs is

the Reynolds number based on the average particle diameter,
dp, and the friction velocity at the porous/fluid interfaae,

The termC PrRegu™ in Eq. (8) accounts for the trans-
verse thermal dispersion (Amiri and Vafai [11,12], Plumb
[13]). Longitudinal thermal dispersion and longitudinal ther-
mal conduction are neglected, which are valid assumptions
if Peclet number is large.

For theconstant wall temperature cafiee dimensionless
temperature is redefined as:

T —Tw
Tm—TW

The dimensionless energy equation in the porous region for
the constant wall temperature case is:

R 8]

1 d
drt
(RF)2

¢ = (9)

km

T +CPr Rq;u"')r

rtdrt
u+

U

Nug¢ (10)
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2.2. Governing equation in the clear fluid region 2.3. Boundary conditions

To obtain the momentum equation for the clear fluid Boundary conditions at the wall
region a two-layer algebraic turbulence model suggested by At the wall of the tube the no-slip boundary condition is
Cebeci and Smith (Cebeci and Smith [14], Wilcox [15]) is utilized:
utilized. According to this model, the velocity distribution

in the clear fluid region, & r < £R, is computed from the N (20)
following equation: The utilization of no-slip boundary condition at the tube wall
dut 1 yt is possible because of the Brinkman term in the momentum
— = 1- (11) equation for the porous region, Eq. (3).

o7 =z (1 )

In addition to this, the following thermal boundary

wherey* is the dimensionless distance from the porous/fluid condition is utilized at the tube wall for theonstant wall

interface.£ Rt — r*; i is the dimensionless eddy viscos- heat flux case

ity, wt/us ; andurT is the ed_dy V|§c05|ty. Ol,+_ps =0 1)
According to the Cebeci—-Smith model [14,15], the turbu-

lent flow domain is divided into two layers, the inner layer A similar condition is utilized for theonstant wall temper-

(0< yT™ < yi) and the outer layetyt > yt). The dimen-  ature case

sionless eddy viscosity is then computed as:

Plr+=g+ =0 (22)
o[ toryt < § .
Mt = M_I'i_‘ for y* > y (12) Boundary conditions at the porous/fluid interface
° From the definitions ofit andr™ the following hydro-
wherey is the smallest value of* for which wr, = wr,. dynamic boundary condition on the clear fluid side of the

The value of the dimensionless eddy viscosity in the inner porous/fluid interface is obtained:
Iayer,y,{, is computed according to the following equation: aut
— =-1 (23)
2 2 -
M{ =(Ky+) [1—exp(—y+/A+)] \du+/dy+\ (13) ort lrt=¢Rr+-0
In addition, the following matching hydrodynamic boundary

and the value of the dimensionless eddy viscosity in the outer o -
conditions are utilized:

layer, y,{), is computed as:

Ut |t —egrpo =u" g gt o =" 24
lujl:o :aTUgajFKleb (14) rt=£R*T40 ERT—0 i ( )
and
whereU¢ is the dimensionless centerline velocity|,—o)/ . N
uz; Fileb is the Klebanoff intermittency function: (@)aL _ duT
67-1 ue SOt li—grepo 9T [irgri—o
Fiaeb = [1+55[y*/(¢R)]"] (15) st ' '
ands; is the dimensionless velocity thickness: = Sall2RE (25)
ERT whereu; is the dimensionless velocity at the porous/fluid
8= / (1—ut/Uud)dy* (16) interface, uj/u.; and g is the dimensionless adjustable
0 coefficient. Eq. (24) simply postulates the continuity of

the filtration velocity across the interface. Eq. (25) is
more interesting because it postulates a jump in the shear
x = 0.40, at =0.0168 At =26 an stress across the interface, the magnitude of this jump is
proportional to the filtration velocity at the interface and
the empirical coefficieng. These boundary conditions are
derived utilizing complicated volume averaging procedure in
Ochoa-Tapia and Whitaker [16,17]. The original derivation

The closure coefficients for the Cebeci—Smith model are:

The energy equation for the clear fluid region is based on the
constant turbulent Prandtl number model. For tbastant
wall heat flux cas¢he energy equation can be presented as:

1 d 1 L Pry L do] 1wt (18) in [16,17] assumed laminar flow in both clear fluid and

rtdrt ThT Pri Tart T C(RH2U porous regions. However, according to the Cebeci—Smith

wherePr; is the turbulent Prandtl number; /a1; andart is model (Eq. (13)), the d|mer_15|_onless eddy V'_SC_OS‘IS[“

the eddy diffusivity of heat. equals zero at the porous/flwc_l mterface. Thus it is _assgmed
For theconstant wall temperature casie energy equa- that Eqs. (24) apd (25) are still valid for the flow situation

tion is: considered in this paper.

1 d P q 1 . Finally, continuity of temperature and heat flux is as-
== [(1 + _r>r+_¢} — __Nu¢”_ (19) sumed across the interface. This translates into the following
rtdrt Pre/  drt (RT?2 " U equations for theonstant wall heat flux
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O,+=gr+—0=0lr+=£r++0 (26a)
9 _ ket 96 (26b)
3r+ rt=¢R+t-0 - kf 8r+ r+=£Rt40

and theconstant wall temperature
Glr+=gr+—0=Plr+=cr+40 (27a)
99 _ Keft 9 (27b)
ortlr+=gRr+-0 ki Ortlrt=£R++0

cases, respectively.

Boundary conditions in the center of the tube
No additional hydrodynamic boundary conditions are re-

917

of pertinent Reynolds numbers with their critical values. To
check whether the flow in the clear fluid region is indeed
turbulent it is necessary to calculate the Reynolds number
based on the diameter of the clear fluid regionR2and the
mean velocity in this regionUm)clear fi:

Rexr = (Um)clear 2§ R /vt = (U$)clear ﬂ2$R+

where(U;)clear 1l iS the dimensionless mean velocity in the
clear fluid region, which is defined as:

(32)

2 o
(V) earn= gz | )
0

quired for Eq. (11) because this is the first-order equation As shown in Ref. [19] (thermal dispersion in the porous layer
and, therefore, requires just one boundary condition, eitheris neglected in this reference, however, because temperature

at the porous/fluid interface or in the center of the tube.

dependence of viscosity is also neglected, this does not

Since hydrodynamic boundary condition at the interface hasinfluence the hydrodynamic solution), f&f- = 1000,Da =
already been formulated (cf. Egs. (23)—(25)), no hydrody- 10~4, and¢ = 0.6 the value oRex is 8.928 x 10°, which
namic boundary condition in the center is needed. It is also is larger than the critical Reynolds number ok4.0%. This

worth noting that the solution of Eqg. (11) automatically sat-
isfies the symmetry conditio®u™/9y™ = 0) in the center
of the tube, ay ™ =£&R™.

For the energy equation, the following symmetry bound-
ary condition is utilized. For theonstant wall heat flux case
this boundary condition is presented as:

20
ort
Similarly, for the constant wall temperature casehis
boundary condition is presented as:
d¢

ort

(28)

=0

(29)

r+=0

2.4. Computation of the Nusselt number

The Nusselt number is computed utilizing the compati-
bility condition (Bejan [18]). For theonstant wall heat flux
casethis condition is presented as:

R+
Nu= U$ (R+)2/ |:2/ utor™ dr+:|

0
For the constant wall temperature casie appropriate
compatibility condition is:

d¢

P

(30)

(31)

rt=R*t

3. Resultsand discussion

Governing equations are discretized utilizing the finite-
difference method. The solution procedure is outlined in
Wilcox [15]. The most important assumption made in this
paper is that the flow in the porous layer is laminar while
the flow in the clear fluid region is turbulent. The validity of

means that the flow in the clear fluid region is turbulent.

To check whether the flow in the porous layer remains
laminar the Reynolds number based &f/2 must be
estimated:

Rex = viil K2 /vy

whereK is the permeability of the porous medium.

Estimating filtration velocitypsi, in the bulk of the fluid
region gives that foR™ = 1000,Da = 104, and¢ = 0.6,

Re is equalto 1.715, which is much smaller than the critical
value of 100, which means that the flow in the porous region
is laminar. (The value of 100 is an estimate; it follows from
Refs. [7,10] and should be considered as a lower limit of
the critical value oReg for porous media, the actual critical
value ofRg may be larger.)

Values of all parameters utilized in computations are
shown directly in the figures. The large valueR¥é, is uti-
lized to show the effect of thermal dispersion. Fig. 2(a) de-
picts dimensionless velocity profiles for different values of
the Darcy number. A larger value of the Darcy number cor-
responds to larger permeability; therefore, velocity in the
porous region is larger for larger value DB&. It is inter-
esting, however, that the flow velocity in the clear fluid re-
gion exhibits significant dependence on the Darcy number
as well. This is because the Darcy number influences the ve-
locity at the porous/fluid interface;”, which serves as a
“starting point” for the turbulent velocity profile.

Fig. 2(b) and (c) display distributions of the dimension-
less temperature for constant wall heat flux and constant wall
temperature cases, respectively. Variation of the Darcy num-
ber has considerable impact on the temperature profiles. This
is because convection is responsible for the major part of
heat transfer from the wall, and the variation of the velocity
distribution that occurs because of the variation of the Darcy
number impacts the temperature distribution as well.

Fig. 3 displays the dependence of the Nusselt number

(34)

this assumption can be easily estimated by comparing valueson the dimensionless experimental constant in the correla-
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Fig. 2. Dimensionless velocities (a) and dimensionless temperatures for the
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Fig. 3. Dependence of the Nusselt number on the dimensionless experimen-
tal constant in the correlation for thermal dispersiénfor different values
of the Darcy number for isoflux and isothermal walls.
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Fig. 4. Dependence of the Nusselt number on the Darcy number for isoflux
and isothermal walls accounting for thermal dispersigh= 0.1) and
neglecting it(C = 0).

tion for thermal dispersion. This figure illuminates the ef-
fect of thermal dispersion on the Nusselt number. Thermal
dispersion leads the apparent increase of effective thermal
conductivity of the porous medium because of the hydrody-
namic mixing of the interstitial fluid at the pore scale. Since
thermal dispersion increases apparent thermal conductivity
of the porous medium, it also increases the Nusselt num-
ber. This increase is especially fast for small value€ of\s

C increases, the slope of the curve becomes closer to hori-
zontal. This means that the curve approaches its asymptotic
limit that physically corresponds to the situation when ther-
mal conductivity of the porous layer is infinitely large. In

isoflux (b) and isothermal (c) wall for different values of the Darcy number this case the value of the Nusselt number is determined by

assuming turbulent flow in the central portion of the tube.

heat transfer in the clear fluid core of the tube alone.
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Fig. 4 displays the effect of the Dacry number on the [3] S.Y. Kim, J.-M. Koo, A.V. Kuznetsov, Effect of anisotropy in per-
Nusselt number for two cases, when thermal dispersion meability and effective thermal conductivity on thermal performance
is accounted for ¢ = 0.1, this value ofC for transverse of an aluminum foam heat sink, Numer. Heat Transfer A 40 (2001)

thermal dispersion follows from experimental data of Wakao 21-36.
of [20] o o [4] B.V. Antohe, J.L. Lage, A general two-equation macroscopic model

and Kaguei [20]) and negleCt.Qd‘__: 0). This figure shows for incompressible flow in porous media, Internat. J. Heat Mass
that the Darcy number has significant effect on the Nusselt ~ Transfer 40 (1997) 3013-3024.

number when thermal dispersion is accounted for. However, [5] M. Prakash, O.F. Turan, Y.G. Li, J. Mahoney, G.R. Thorpe, Impinging
it has very little effect when thermal dispersion is neglected round jet studies in a cylindrical enclosure with and without a porous

This is because accounting for thermal dispersion results in layer: Part |—Flow visualizations and simulations, Chem. Engrg.
IS 1S us unting ISpersi sutis 1 Sci. 56 (2001) 3855-3878.

heavy dependence of effective th?rmal conductivity _Of .the [6] M. Prakash, O.F. Turan, Y.G. Li, J. Mahoney, G.R. Thorpe, Impinging
porous medium on the flow velocity. The flow velocity in round jet studies in a cylindrical enclosure with and without a porous

the porous region is controlled by permeability, that is, by layer: Part Il—LDV measurements and simulations, Chem. Engrg.

the Darcy number. Sci. 56 (2001) 3879-3892.
) [7] D.A. Nield, A. Bejan, Convection in Porous Media, 2nd Edition,

Springer, New York, 1999.
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