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Abstract

The purpose of this paper is to develop an engineering approach to computations of turbulent flows in composite domains partly
by a clear fluid and partly by a fluid saturated porous medium. Previous research concerning turbulent flows in porous media
that the effect of porous media is to dampen turbulence. Therefore, in porous/fluid domains the penetration depth of turbulent e
the porous region is expected to be small. The authors suggest assuming that the flow over the whole porous region remains l
matching turbulent flow solution in the clear fluid region with the laminar flow solution in the turbulent flow region. Although the fl
the porous region is assumed to be laminar, linear Darcy or Brinkman–Darcy models cannot be utilized to describe momentum
in the porous region because of large filtration velocity. The momentum transport model in the porous layer utilized in this re
based on the Brinkman–Forchheimer-extended Darcy equation, which allows the accounting for deviation from linearity and also
smooth matching of the filtration velocity at the porous/fluid interface. Because of the large filtration velocity in the porous region, th
equation in the porous region also accounts for the thermal dispersion effects.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
us/
ns.
ws
em,
ree
etic
ld
ics
ry
ong
tery
lem
ous
in
is

f the
o th
s of

ash
is

r for
ted,
is

in
nt.
s a
the
aller
on if

ed
city
tion
ted
w

erm
be
ical
on.
imer
ly by
w

1. Introduction

Forced convection turbulent flow in composite poro
fluid domains is relevant to many industrial applicatio
Relevant examples include, but not limited to turbulent flo
near porous obstacles [1] (this is an important probl
for example, in determining optimal parameters of t
shelterbelts), casting of binary alloys with electromagn
stirring [2], avoiding freezing of gating channels in mou
filling in casting processes, cooling of microelectron
[3], and modeling blood flow in partially closed corona
arteries because of the deposition of fatty material al
their walls (this disease often requires a coronary ar
bypass surgery). In general, this is a complicated prob
and matching turbulent models for the clear fluid and por
regions is not trivial. However, in forced convection
composite porous/fluid domains most of the fluid flow
expected to go through the clear fluid region because o
considerable resistance that the porous layer creates t
flow. Recent theoretical and experimental investigation
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turbulence in porous media (Antohe and Lage [4], Prak
et al. [5,6]) indicate is that the effect of porous media
to dampen turbulence, and this dampening is stronge
porous media of smaller permeability. It can be expec
therefore, that if the permeability of the porous layer
sufficiently small, the flow in the porous region will rema
laminar even if the flow in the clear fluid region is turbule
The whole porous region in this formulation become
large laminar sublayer. Indeed, true turbulence implies
existence of a cascade of energy from large eddies to sm
eddies. This cascade cannot develop in the porous regi
permeability of the porous medium is sufficiently small.

Although the flow in the porous region is assum
laminar, it is expected that the dependence of flow velo
on the pressure gradient deviates from a linear correla
given by the Darcy law. This deviation can be accoun
for by utilizing the Forchheimer extension of the Darcy la
in the momentum equation and the thermal dispersion t
in the energy equation (Nield and Bejan, [7]). It should
noted that there is a difference in opinions about the phys
origin of the Forchheimer drag and thermal dispersi
Masuka and Takatsu [8] suggested that the Forchhe
flow resistance and thermal dispersion are caused main
turbulent mixing in porous media. A different point of vie
sevier SAS. All rights reserved.
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Nomenclature

af fluid thermal diffusivity . . . . . . . . . . . . . . m2·s−1

aT eddy diffusivity of heat . . . . . . . . . . . . . . . m2·s−1

A+ Van Driest coefficient, defined in Eq. (17)
cF Forchheimer coefficient
C dimensionless experimental constant in the

correlation for thermal dispersion
dp average diameter of porous particle . . . . . . . . m
Da Darcy number,= K/R2

FKleb Klebanoff intermittency function, defined in
Eq. (15)

h heat transfer coefficient . . . . . . . . . W·m−2·K−1

kf fluid thermal conductivity . . . . . . . W·m−1·K−1

km stagnant thermal conductivity of the porous
medium . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

Nu Nusselt number,= h2R/kf

p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number,= νf/af

Prt turbulent Prandtl number,= νT/aT

q ′′
W wall heat flux . . . . . . . . . . . . . . . . . . . . . . . W·m−2

r radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . m
r+ dimensionless radial coordinate,= uτ r/νf

R duct radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R+ dimensionless radius of the tube,= uτR/νf

Rep Reynolds number based on the average particle
diameter and the friction velocity at the
porous/fluid interface,= uτdp/νf

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tm mean flow temperature . . . . . . . . . . . . . . . . . . . . K
TW wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
u longitudinal velocity . . . . . . . . . . . . . . . . . . m·s−1

u+ dimensionless velocity,= u/uτ

uτ friction velocity at the porous/fluid interface,
= (τi/ρf)

1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

U+
m dimensionless mean flow velocity in the duct

y+ dimensionless distance from the porous/fluid
interface,= ξR+ − r+

y+
m the smallest dimensionless distance from the

interface for whichµTi = µTo

Greek symbols

αT closure coefficient in the Cebeci–Smith model,
defined in Eq. (17)

β dimensionless adjustable coefficient in the
matching condition for the shear stress at the
porous/fluid interface

θ dimensionless temperature for the constant wa
heat flux case,= (1/Nu)(T − TW)/(Tm − TW)

κ von Karman constant, defined in Eq. (17)
µeff effective viscosity of porous

medium . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

µf fluid viscosity . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

µT eddy viscosity . . . . . . . . . . . . . . . . . . kg·m−1·s−1

µ+
T dimensionless eddy viscosity,= µT/µf

µTi dimensionless eddy viscosity in the inner layer
µTo dimensionless eddy viscosity in the outer layer
νf fluid kinematic viscosity . . . . . . . . . . . . . m2·s−1

νT eddy diffusivity of momentum . . . . . . . . m2·s−1

ξ dimensionless position of the interface, defined
in Fig. 1

ρf fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

τi shear stress at the porous/fluid interface N·m−2

φ dimensionless temperature for the constant wal
temperature case,= (T − TW)/(Tm − TW)
0],
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is shared by Nield [9] who, referencing a book by Bear [1
pointed out that actual turbulence occurs at values of
Reynolds number at least one order of magnitude higher
the Reynolds number at which the flow starts deviating fr
the Darcy law. The authors of this paper share Dr. Nie
point of view expressed in Ref. [9]. Therefore, by utilizin
Forchheimer and dispersion terms in equations for
porous region, they do not attempt to model turbulence in
porous layer, they assume that the flow in the porous re
is laminar. However, because of the large filtration veloc
especially in the vicinity of the porous/fluid interface, no
Darcian effects must be accounted for.

Fig. 1 displays a schematic diagram of the probl
considered in this paper. It is assumed that the central po
of the circular tube, 0� r � ξR, is occupied by a clea
fluid while its peripheral part,ξR � r � R, is occupied
by an isotropic porous medium of uniform porosity. Tw
types of thermal boundary conditions at the tube wall
considered, a constant heat flux,q ′′

W, and a constant wa
temperature,TW. The entrance region is not considered, a
the flow is assumed to be hydrodynamically and therm
fully developed.

2. Problem formulation

2.1. Governing equation in the porous region

Since the whole flow domain is divided into two region
the central region which is occupied by a clear fluid (wh
the flow is turbulent) and the peripheral region occupied
a fluid saturated porous medium (where the flow is lamin
separate sets of governing equations must be formu
for each of these two regions. The solutions must then
matched at the porous/fluid interface.

For the porous region(ξR � r � R), the Brinkman–
Forchheimer extension of the Darcy law [7] is utilized. T
Forchheimer term accounts for the deviation from line
ity, which is essential for large filtration velocity. Brinkma
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Fig. 1. Schematic diagram of the problem.

term allows retaining continuity of filtration velocity at th
porous/fluid interface. Because of the turbulent flow in
central portion of the tube, it is convenient to introduce
mensionless variables similar to wall coordinates in tur
lence modeling. These dimensionless coordinates are
used throughout the channel, in both laminar (porous)
turbulent (clear fluid) regions. For example, dimensionl
radius is introduced as:

r+ = uτ r/νf (1)

where r is the dimensional radius;uτ is the friction velocity
at the porous/fluid interface;(τi/ρf)

1/2; νf is the fluid
kinematic viscosity;ρf is the fluid density; andτi is the shear
stress at the porous/fluid interface.

The dimensionless filtration velocity is defined as:

u+ = u/uτ (2)

where u is the dimensional filtration velocity (over th
clear fluid region filtration velocity coincides with the flu
velocity).

In these dimensionless variables the Brinkman–Fo
heimer-extended Darcy equation [7] can be presented a

2

ξR+ +
(
µeff

µf

)
1

r+
d

dr+

(
r+ du+

dr+

)

− u+

Da(R+)2 − cF

Da1/2R+
(
u+)2 = 0 (3)

wherecF is the Forchheimer coefficient;Da is the Darcy
number,K/R2; R+ is the dimensionless radius of the tub
uτR/νf ; µeff is the effective viscosity in the porous regio
µf is the fluid dynamic viscosity; andξ is the dimensionles
position of the interface (cf. Fig. 1). The ratioµeff/µf is a
function of porosity of the porous medium. The porosity
the porous layer is assumed constant and uniform; there
the ratioµeff/µf is also constant.

Eq. (3) is the momentum equation for the porous reg
The energy equations for the porous region must be for
lated separately for the constant wall heat flux and the c
stant wall temperature boundary conditions. For theconstant
,

wall heat flux casethe dimensionless temperature can be
fined as:

θ = (1/Nu)(T − TW)/(Tm − TW) (4)

where T is the temperature,TW is the wall temperature
(temperature atr+ = R+), Tm is the mean temperature
the tube:

Tm = 2

R2Um

R∫
0

uT r dr (5)

U+
m is the mean fluid velocity in the tube:

U+
m = 2

(R+)2

R+∫
0

u+r+ dr+ (6)

andNu is the Nusselt number:

Nu= h2R/kf = 2Rq ′′
W/

[
kf(TW − Tm)

]
(7)

whereh is the heat transfer coefficient andq ′′
W is the wall

heat flux.
Assuming thermal equilibrium between the fluid a

solid in the porous layer, the energy equation for the cons
wall heat flux case can then be presented as:

1

r+
d

dr+

[(
km

kf
+ C Pr Repu

+
)
r+ dθ

dr+

]

= − 1

(R+)2

u+

U+
m

(8)

where C is dimensionless experimental constant in
correlation for thermal dispersion;kf is the fluid thermal
conductivity;km is the stagnant thermal conductivity of th
porous medium (whenu+ = 0); Pr is the Prandtl number
νf/af ; af is the fluid thermal diffusivity;Rep = uτdp/νf is
the Reynolds number based on the average particle diam
dp, and the friction velocity at the porous/fluid interface,uτ .

The termC Pr Repu+ in Eq. (8) accounts for the trans
verse thermal dispersion (Amiri and Vafai [11,12], Plum
[13]). Longitudinal thermal dispersion and longitudinal th
mal conduction are neglected, which are valid assumpt
if Peclet number is large.

For theconstant wall temperature casethe dimensionles
temperature is redefined as:

φ = T − TW

Tm − TW
(9)

The dimensionless energy equation in the porous region
the constant wall temperature case is:

1

r+
d

dr+

[(
km

kf
+ C Pr Repu

+
)
r+ dφ

dr+

]

= − 1

(R+)2 Nuφ
u+

U+
m

(10)
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2.2. Governing equation in the clear fluid region

To obtain the momentum equation for the clear fl
region a two-layer algebraic turbulence model suggeste
Cebeci and Smith (Cebeci and Smith [14], Wilcox [15])
utilized. According to this model, the velocity distributio
in the clear fluid region, 0� r � ξR, is computed from the
following equation:

du+

dy+ = 1

1+ µ+
T

(
1− y+

ξR+

)
(11)

wherey+ is the dimensionless distance from the porous/fl
interface,ξR+ − r+; µ+

T is the dimensionless eddy visco
ity, µT/µf ; andµT is the eddy viscosity.

According to the Cebeci–Smith model [14,15], the turb
lent flow domain is divided into two layers, the inner lay
(0 � y+ � y+

m) and the outer layer(y+ > y+
m). The dimen-

sionless eddy viscosity is then computed as:

µ+
T =

{
µ+

Ti
for y+ � y+

m

µ+
To

for y+ > y+
m

(12)

wherey+
m is the smallest value ofy+ for which µTi = µTo.

The value of the dimensionless eddy viscosity in the in
layer,µ+

Ti
, is computed according to the following equatio

µ+
Ti

= (
κy+)2[1− exp

(−y+/A+)]2∣∣du+/dy+∣∣ (13)

and the value of the dimensionless eddy viscosity in the o
layer,µ+

To
, is computed as:

µ+
To

= αTU
+
c δ+

v FKleb (14)

whereU+
c is the dimensionless centerline velocity,(u|r=0)/

uτ ; FKleb is the Klebanoff intermittency function:

FKleb = [
1+ 5.5

[
y+/

(
ξR+)]6]−1 (15)

andδ+
v is the dimensionless velocity thickness:

δ+
v =

ξR+∫
0

(
1− u+/U+

c

)
dy+ (16)

The closure coefficients for the Cebeci–Smith model are

κ = 0.40, αT = 0.0168, A+ = 26 (17)

The energy equation for the clear fluid region is based on
constant turbulent Prandtl number model. For theconstant
wall heat flux casethe energy equation can be presented

1

r+
d

dr+

[(
1+ µ+

T
Pr

Prt

)
r+ dθ

dr+

]
= − 1

(R+)2

u+

U+
m

(18)

wherePrt is the turbulent Prandtl number,νT/aT; andaT is
the eddy diffusivity of heat.

For theconstant wall temperature case, the energy equa
tion is:

1

r+
d

dr+

[(
1+ µ+

T
Pr

Prt

)
r+ dφ

dr+

]
= − 1

(R+)2 Nuφ
u+

U+
m

(19)
2.3. Boundary conditions

Boundary conditions at the wall
At the wall of the tube the no-slip boundary condition

utilized:

u+|r+=R+ = 0 (20)

The utilization of no-slip boundary condition at the tube w
is possible because of the Brinkman term in the momen
equation for the porous region, Eq. (3).

In addition to this, the following thermal bounda
condition is utilized at the tube wall for theconstant wall
heat flux case:

θ |r+=R+ = 0 (21)

A similar condition is utilized for theconstant wall temper
ature case:

φ|r+=R+ = 0 (22)

Boundary conditions at the porous/fluid interface
From the definitions ofu+ andr+ the following hydro-

dynamic boundary condition on the clear fluid side of
porous/fluid interface is obtained:

∂u+

∂r+
∣∣∣
r+=ξR+−0

= −1 (23)

In addition, the following matching hydrodynamic bounda
conditions are utilized:

u+|r+=ξR++0 = u+|r+=ξR+−0 = u+
i (24)

and(
µeff

µf

)
∂u+

∂r+

∣∣∣∣
r+=ξR++0

− ∂u+

∂r+

∣∣∣∣
r+=ξR+−0

= βu+
i

Da1/2R+ (25)

whereu+
i is the dimensionless velocity at the porous/flu

interface, ui/uτ ; and β is the dimensionless adjustab
coefficient. Eq. (24) simply postulates the continuity
the filtration velocity across the interface. Eq. (25)
more interesting because it postulates a jump in the s
stress across the interface, the magnitude of this jum
proportional to the filtration velocity at the interface a
the empirical coefficientβ . These boundary conditions a
derived utilizing complicated volume averaging procedur
Ochoa–Tapia and Whitaker [16,17]. The original derivat
in [16,17] assumed laminar flow in both clear fluid a
porous regions. However, according to the Cebeci–Sm
model (Eq. (13)), the dimensionless eddy viscosity,µ+

T ,
equals zero at the porous/fluid interface. Thus it is assu
that Eqs. (24) and (25) are still valid for the flow situati
considered in this paper.

Finally, continuity of temperature and heat flux is a
sumed across the interface. This translates into the follow
equations for theconstant wall heat flux
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θ |r+=ξR+−0 = θ |r+=ξR++0 (26a)

∂θ

∂r+
∣∣∣
r+=ξR+−0

= keff

kf

∂θ

∂r+

∣∣∣∣
r+=ξR++0

(26b)

and theconstant wall temperature

φ|r+=ξR+−0 = φ|r+=ξR++0 (27a)

∂φ

∂r+
∣∣∣
r+=ξR+−0

= keff

kf

∂φ

∂r+
∣∣∣
r+=ξR++0

(27b)

cases, respectively.

Boundary conditions in the center of the tube
No additional hydrodynamic boundary conditions are

quired for Eq. (11) because this is the first-order equa
and, therefore, requires just one boundary condition, ei
at the porous/fluid interface or in the center of the tu
Since hydrodynamic boundary condition at the interface
already been formulated (cf. Eqs. (23)–(25)), no hydro
namic boundary condition in the center is needed. It is a
worth noting that the solution of Eq. (11) automatically s
isfies the symmetry condition(∂u+/∂y+ = 0) in the center
of the tube, aty+ = ξR+.

For the energy equation, the following symmetry bou
ary condition is utilized. For theconstant wall heat flux cas
this boundary condition is presented as:

∂θ

∂r+
∣∣∣
r+=0

= 0 (28)

Similarly, for the constant wall temperature case, this
boundary condition is presented as:

∂φ

∂r+
∣∣∣
r+=0

= 0 (29)

2.4. Computation of the Nusselt number

The Nusselt number is computed utilizing the comp
bility condition (Bejan [18]). For theconstant wall heat flux
casethis condition is presented as:

Nu= U+
m

(
R+)2

/[
2

R+∫
0

u+θr+ dr+
]

(30)

For the constant wall temperature casethe appropriate
compatibility condition is:

Nu= −2
keff

kf
R+ dφ

dr+
∣∣∣
r+=R+ (31)

3. Results and discussion

Governing equations are discretized utilizing the fin
difference method. The solution procedure is outlined
Wilcox [15]. The most important assumption made in t
paper is that the flow in the porous layer is laminar wh
the flow in the clear fluid region is turbulent. The validity
this assumption can be easily estimated by comparing va
of pertinent Reynolds numbers with their critical values.
check whether the flow in the clear fluid region is inde
turbulent it is necessary to calculate the Reynolds num
based on the diameter of the clear fluid region, 2ξR, and the
mean velocity in this region,(Um)clear fl:

Re2ξR = (Um)clear fl2ξR/νf = (
U+

m

)
clear fl2ξR

+ (32)

where(U+
m )clear fl is the dimensionless mean velocity in t

clear fluid region, which is defined as:

(
U+

m

)
clear fl= 2

(ξR+)2

ξR+∫
0

u+r+ dr+ (33)

As shown in Ref. [19] (thermal dispersion in the porous la
is neglected in this reference, however, because temper
dependence of viscosity is also neglected, this does
influence the hydrodynamic solution), forR+ = 1000,Da =
10−4, andξ = 0.6 the value ofRe2ξR is 8.928× 103, which
is larger than the critical Reynolds number of 4× 103. This
means that the flow in the clear fluid region is turbulent.

To check whether the flow in the porous layer rema
laminar the Reynolds number based onK1/2 must be
estimated:

ReK = vfilK
1/2/νf (34)

whereK is the permeability of the porous medium.
Estimating filtration velocity,vfil , in the bulk of the fluid

region gives that forR+ = 1000,Da = 10−4, andξ = 0.6,
ReK is equal to 1.715, which is much smaller than the criti
value of 100, which means that the flow in the porous reg
is laminar. (The value of 100 is an estimate; it follows fro
Refs. [7,10] and should be considered as a lower limi
the critical value ofReK for porous media, the actual critic
value ofReK may be larger.)

Values of all parameters utilized in computations
shown directly in the figures. The large value ofRep is uti-
lized to show the effect of thermal dispersion. Fig. 2(a)
picts dimensionless velocity profiles for different values
the Darcy number. A larger value of the Darcy number c
responds to larger permeability; therefore, velocity in
porous region is larger for larger value ofDa. It is inter-
esting, however, that the flow velocity in the clear fluid
gion exhibits significant dependence on the Darcy num
as well. This is because the Darcy number influences the
locity at the porous/fluid interface,u+

i , which serves as
“starting point” for the turbulent velocity profile.

Fig. 2(b) and (c) display distributions of the dimensio
less temperature for constant wall heat flux and constant
temperature cases, respectively. Variation of the Darcy n
ber has considerable impact on the temperature profiles.
is because convection is responsible for the major pa
heat transfer from the wall, and the variation of the veloc
distribution that occurs because of the variation of the Da
number impacts the temperature distribution as well.

Fig. 3 displays the dependence of the Nusselt num
on the dimensionless experimental constant in the cor
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Fig. 2. Dimensionless velocities (a) and dimensionless temperatures f
isoflux (b) and isothermal (c) wall for different values of the Darcy num
assuming turbulent flow in the central portion of the tube.
Fig. 3. Dependence of the Nusselt number on the dimensionless exper
tal constant in the correlation for thermal dispersion,C, for different values
of the Darcy number for isoflux and isothermal walls.

Fig. 4. Dependence of the Nusselt number on the Darcy number for is
and isothermal walls accounting for thermal dispersion(C = 0.1) and
neglecting it(C = 0).

tion for thermal dispersion. This figure illuminates the
fect of thermal dispersion on the Nusselt number. Ther
dispersion leads the apparent increase of effective the
conductivity of the porous medium because of the hydro
namic mixing of the interstitial fluid at the pore scale. Sin
thermal dispersion increases apparent thermal conduc
of the porous medium, it also increases the Nusselt n
ber. This increase is especially fast for small values ofC. As
C increases, the slope of the curve becomes closer to
zontal. This means that the curve approaches its asymp
limit that physically corresponds to the situation when th
mal conductivity of the porous layer is infinitely large.
this case the value of the Nusselt number is determine
heat transfer in the clear fluid core of the tube alone.
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Fig. 4 displays the effect of the Dacry number on
Nusselt number for two cases, when thermal disper
is accounted for (C = 0.1, this value ofC for transverse
thermal dispersion follows from experimental data of Wak
and Kaguei [20]) and neglected(C = 0). This figure shows
that the Darcy number has significant effect on the Nus
number when thermal dispersion is accounted for. Howe
it has very little effect when thermal dispersion is neglec
This is because accounting for thermal dispersion resul
heavy dependence of effective thermal conductivity of
porous medium on the flow velocity. The flow velocity
the porous region is controlled by permeability, that is,
the Darcy number.

4. Conclusions

In this paper, an engineering approach toward comp
tions of turbulent flows in composite porous/fluid doma
is suggested. This approach is based on the assumptio
although the flow in the clear fluid region is turbulent, t
flow in the porous region remains laminar. The whole por
domain is thus approximated as a laminar sublayer. It is
pected that this approach will perform well for porous me
of small permeability, because the penetration depth of
bulent eddies coming from the clear fluid region into t
media is very small. Further experimental research to v
date this approach is needed.
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